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Abstract 

Two-predictor suppression situations continue to produce uninterpretable conditions in linear 

regression. This study introduces a software called Supsim that facilitates the study of 

suppression situations by randomly generating normally distributed vectors x1, x2, and y in a 

way that regressing y on both x1 and x2 creates numerous random two-predictor models 

(RTM's) with or without a suppressor variable effect. This study also introduces another tool 

called Supcalc that receives arbitrary 𝑟𝑦1, 𝑟𝑦2 and n as inputs and calculates 𝑅2, 𝛽̂1, 𝛽̂2 and 

their standard errors, semipartial and squared semipartial correlations, multicollinearity limits 

and ratios, and novel indexes of statistical control for two-predictor regression models. The 

Supsim provides users with 3D scatterplots of numerous RTM's with or without suppression. 

Comparing 3D scatterplots with regression surfaces of different suppression and non-

suppression situations, this study provides important new insights into two-predictor 

suppression effects that help resolve the conceptual complexities of these situations. An 

important focus is to compare 3D scatterplots of some special enhancement situations, called 

Hamilton's extreme example, with those of redundancy situations. Such a comparison 

suggests that the basic mathematical concepts of two-predictor suppression situations need to 

be reconsidered in terms of statistical control function. 

Keywords: Multicollinearity, Suppressor Variable, Hamilton's Extreme Example, Statistical 

Control Function, Relationship Simulation   
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1. INTRODUCTION 

1.1 The Challenge of Interpreting Two-predictor Suppression Situations  

Two-predictor suppression effects remain among complex and confusing situations in linear 

regression research. It seems the confusion, controversy and dismay that surround the 

definition, explanation and interpretation of suppression situations (e.g., McFatter 1979; 

Holling 1983; Ludlow and Klein 2014) has been caused by impossibilities or contradictory 

results. When the inclusion of a second predictor say x2 which is relatively highly correlated 

with x1, in the regression equation leads to some kind of two-predictor suppression situation, 

possible contradictory results include: calculating a negative part of variance explained when 

partitioning 𝑅2 (Cohen et al. 2003), finding opposite signs between the second predictor's 

zero-order correlation with y and its regression coefficient in the equation, observing 

situations in which one of the two predictors or both of them get a large regression coefficient 

in the equation despite showing “no or low” zero-order correlation with y, and finally finding 

situations in which 𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2  (Hamilton 1987). Under the condition of 𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2 , 

Hamilton (1987) describes an even more challenging two-predictor suppression situation in 

which 𝑟𝑦1 and 𝑟𝑦2 are both close to 0 but 𝑅2 and |𝑟12| are both near 1. Given that research on 

these challenging two-predictor suppression effects requires access to some computerized 

simulation algorithm that can generate all these different situations, the authors develop and 

introduce a computerized algorithm called Supsim, a specialized software made available 

both as an open-source, command-line Python package (visit https://pypi.org/project/supsim/  

for installing the package) and as a web-based JavaScript software (find screenshots from the 

user-interface of the web-based Supsim in panel B of Figure 1; also visit 

https://supsim.netlify.app/supsim to start working with Supsim). This algorithm enables 

researchers to easily generate numerous series of random data vectors x1, x2, and y so that one 

https://pypi.org/project/supsim/
https://supsim.netlify.app/supsim
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can create numerous situations with or without suppression by regressing y on both x1 and x2. 

The web-based Supsim also allows investigators to produce 3D scatterplots of these 

simulated random two-predictor models (RTM's). Before proceeding, a comprehensive 

definition of two-predictor suppression effects is needed to be used as a frame of reference.  

1.2 Attempts to Provide a Comprehensive Definition of Various Suppression Situations 

Friedman and Wall’s interesting work (Friedman and Wall 2005) on two-predictor 

suppression effects is a promising approach that incorporates different definitions of 

suppression situations that has been presented so far. Holding arbitrary selected 𝑟𝑦1 and 𝑟𝑦2 

constant and letting 𝑟12 vary over its possible limit (see inequality (1) below), Friedman and 

Wall (2005) show that four different regions with or without suppression can occur in a graph 

in which each region corresponds to some suppression or non-suppression situations defined 

previously by other leading researchers in this field. According to Friedman and Wall (2005), 

under conditions where 𝑟𝑦1 and 𝑟𝑦2 both have positive signs, and 𝑟𝑦1  >  𝑟𝑦2 , as it is common 

in the linear regression research, the regions on the graph, from left to right, include: 

First, the “Region I: enhancement” (Friedman and Wall 2005) which is present under the 

following conditions: 

- All 𝑟12’s < 0 

- |𝛽̂1| > |𝑟𝑦1| 

- 𝑅2 >  𝑟𝑦1
2 +  𝑟𝑦2

2  

- And the signs of 𝛽̂1 and 𝛽̂2 are always similar to the signs of 𝑟𝑦1 and 𝑟𝑦2, respectively. 

Friedman and Wall’s definition of enhancement in region I is equivalent to the definitions 

offered by  Horst (1941) and Lynn (2003) for “classical suppression” (only when 𝑟𝑦2 = 0),  

Conger (1974) for “reciprocal suppression”, Cohen and Cohen (1975) and Lynn (2003) for 
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“cooperative suppression”, Currie and Korabinski (1984) , and Friedman and Wall (2005) for 

“enhancement”, Shieh (2001) for “enhancement-synergism”, Sharpe and Roberts (1997), and 

Velicer (1978) for “suppression”, and finally Hamilton (1987) for “synergism”; 

Second, the “Region II: redundancy” (Friedman and Wall 2005) as an ordinary situation 

without suppression in which the following conditions hold: 

- 0 ≤ 𝑟12 ≤  
𝑟𝑦2

𝑟𝑦1
  (the ratio 

𝑟𝑦2

𝑟𝑦1
  also has been called 𝛾 in the previous literature) 

- |𝛽̂1| ≤ |𝑟𝑦1| 

- 𝑅2 ≤  𝑟𝑦1
2 +  𝑟𝑦2

2  

The redundancy region on Friedman and Wall's graph corresponds to Cohen and Cohen’s 

(1975), Currie and Korabinski’s (1984), Friedman and Wall's (2005), and finally Velicer’s 

(1978) definitions of an ordinary situation without suppression; 

Third, the “Region III: suppression” (Friedman and Wall 2005) in which the following 

conditions hold: 

- 𝛾 < 𝑟12 ≤  
2 (𝑟𝑦1× 𝑟𝑦2)

𝑟𝑦1
2 + 𝑟𝑦2

2  (the ratio 
2 (𝑟𝑦1× 𝑟𝑦2)

𝑟𝑦1
2 + 𝑟𝑦2

2  =
2𝛾

1+𝛾2) 

- |𝛽̂1| > |𝑟𝑦1| 

- 𝑅2 ≤  𝑟𝑦1
2 +  𝑟𝑦2

2  

- And in which 𝑟𝑦2 and 𝛽̂2 are always of opposite signs. 

The definition of the region III suppression on Friedman and Wall's graph is consistent with 

the definitions suggested by Darlington (1968) for “negative suppression”, Cohen and Cohen 

(1975) and Currie and Korabinski (1984) for “net suppression”, and finally Conger (1974), 

and Friedman and Wall (2005) for “suppression”; 
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And finally, the “Region IV: enhancement” (Friedman and Wall 2005) in which the 

following conditions hold: 

- all 𝑟12′𝑠 > 
2𝛾

1+𝛾2 

- |𝛽̂1| > |𝑟𝑦1| 

- 𝑅2 >  𝑟𝑦1
2 +  𝑟𝑦2

2  

- And in which 𝑟𝑦2 and 𝛽̂2 are always of opposite signs. 

Friedman and Wall’s "region IV enhancement" is equivalent to the definitions suggested by 

Horst (1941) and Lynn (2003) for “classical suppression” (i.e., when 𝑟𝑦2 = 0), Currie and 

Korabinski (1984) , and Friedman and Wall (2005) for “enhancement”, Shieh (2001) for  

“enhancement-synergism”, Darlington (1968) for “negative suppression”, Cohen and Cohen 

(1975) for “net suppression”, Conger (1974), Lynn (2003), Sharpe and Roberts (1997) and 

Velicer (1978) for “suppression”, and finally Hamilton (1987) for “synergy”. 

It should be noted that in Friedman and Wall’s graphs, when 𝑟𝑦1 and 𝑟𝑦2 are of opposite 

signs, the order of the regions described above becomes reverse. When reverse graph holds, 

from left to right, there are region IV (enhancement), region III (suppression), region II 

(redundancy), and region I (enhancement). When the latter is the case, region I covers any 

positive values of 𝑟12 (all 𝑟12’s > 0), and regions II, III, and IV all are shifted to the negative 

side of the 𝑟12 axis. In addition, when 𝑟𝑦2 = 0, a situation called “classical suppression”, 

Friedman and Wall’s graph has only two regions including, from left to right, region I 

enhancement, and region IV enhancement (Visit Friedman and Wall’s online application 

https://steamtraen.shinyapps.io/suppressiongraphics/ to create the graphs). 

Friedman and Wall (2005) believe that in order to get an accurate picture of two-

predictor suppression effects each fixed pairs of 𝑟𝑦1 and 𝑟𝑦2 should be considered separately 

https://steamtraen.shinyapps.io/suppressiongraphics/
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allowing 𝑟12 vary over its possible limit. They state that it is not the 𝑟12 per se but the 

combination of the three correlations that affect the sign change in 𝛽̂2. The possibility limit of 

𝑟12, when 𝑟𝑦1 and 𝑟𝑦2 are given, is defined by the following inequality (e.g., Neill 1973; 

Sharpe and Roberts 1997): 

𝑟𝑦1 × 𝑟𝑦2 −  √(1 −  𝑟𝑦1
2 ) (1 −  𝑟𝑦2

2 )  ≤  𝑟12 ≤  𝑟𝑦1 × 𝑟𝑦2 +  √(1 −  𝑟𝑦1
2 ) (1 −  𝑟𝑦2

2 )               (1) 

The limits imposed by the fact that the correlation matrix which 𝑟𝑦1, 𝑟𝑦2, and 𝑟12 come from 

must be nonnegative, definite (Neill 1973; Sharpe and Roberts 1997; Friedman and Wall 

2005). The limits defined by inequality (1) imply that the possible interval of 𝑟12 can become 

very wide when both |𝑟𝑦1| and |𝑟𝑦2|are close to 0 and it can also become very narrow when 

both |𝑟𝑦1| and |𝑟𝑦2| are near 1. Another important insight here is that the possible interval of 

𝑟12 produced by non-negative definiteness restriction, also limits the value of 𝑅2 between 0 

and 1 while without limiting 𝑟12, the 𝑅2 values turn out to be far greater than 1 when large 

|𝑟12| values beyond the allowed boundaries are used (see tables 1 through 3). Concentrating 

on the possibility interval of 𝑟12 is extremely important in understanding two-predictor 

suppression effects, because formulas of both 𝑅2 and 𝛽̂2 (and 𝛽̂1 as well) are sensitive to the 

values of 𝑟12 as it is evident from formula (2) (Cohen et al. 2003) and formula (3) (Hamilton 

1987; Cohen et al. 2003) below: 

𝛽̂2 =  
𝑟𝑦2−𝑟𝑦1𝑟12

1−𝑟12
2                                                        (2) 

𝑅2 =  
𝑟𝑦1

2 +𝑟𝑦2
2 −2𝑟𝑦1𝑟𝑦2𝑟12

1−𝑟12
2                                                 (3) 

As mentioned above, in Friedman and Wall's (2005) approach a fixed pair of 𝑟𝑦1 and 𝑟𝑦2  is 

selected arbitrarily to see what happens to the regression coefficients and 𝑅2 values when 𝑟12 
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vary over its possible limit. This approach beside its strengths has an important limitation 

because in this way one is completely unaware of the raw data and the 3D scatterplots related 

to each particular regression model. Hamilton (1987) does explain a method for generating 

artificial data vectors x1, x2, and y that are used in building regression models in which 

𝑅2 >  𝑟𝑦1
2 +  𝑟𝑦2

2 , but he uses the data vectors x1, x2, and y only in drawing two-dimensional 

scatterplots and fails to explore 3D scatterplots of the resulting two-predictor models. The 

authors believe comparing 3D scatterplots of two-predictor regression models with or without 

suppression bear important new insights into the effects of multicollinearity on the results of 

linear regression models. In addition, little attention has been paid to the mechanisms of 

statistical control in redundancy situations compared to suppression situations in the previous 

research. 

2. MATERIALS AND METHODS 

2.1 Relationship Simulation or RTM Generation Algorithm 

The idea of RTM generation algorithm is to facilitate the study of two-predictor suppression 

effects by generating numerous random functions (i.e., yo = f(x1, x2)) and inserting errors into 

the outputs of those functions and then fitting an OLS regression surface to the resulting 

noisy data (y) to produce and classify numerous random, two-predictor models that some are 

affected by a suppressor variable while some are not. The proposed algorithm is illustrated by 

panel A of Figure (1). This iterative process starts by choosing two random vectors x1 and x2 

so that the x1 and x2 show a specific amount of correlation with each other (𝑟12). Next, a 

random function is generated to produce yo as a function of x1 and x2 and then a normally 

distributed noise 𝑒 is added to yo vector in order to generate a noisy data vector y (i.e., 

𝑦 =  𝑦𝑜 + 𝑒). The distribution of the noise 𝑒 = 𝑁(𝜇𝑒 , 𝜎𝑒) is controlled by the user before 

running the algorithm through selecting an A coefficient where 𝜇𝑒 = 𝐴𝜇𝑦𝑜
 and 𝜎𝑒 = 𝐴𝜎𝑦𝑜

. 
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User-provided constraints in this process, which all are inserted before running the algorithm, 

are imposed upon 𝑟𝑦1, 𝑟𝑦2, 𝑟12, and 𝑅2 enhancement. Otherwise all the required constraints 

are met, the current RTM shall be discarded and the current iteration shall be started again. 

When designing algorithm of Supsim, the authors noticed that one of the challenging 

constraints to meet was the specified amount of correlation between x1 and x2. The authors 

observed that satisfying this constraint requires an exhaustive search over a very large space 

of all possible RTMs which is not feasible in a reasonable time. In order to overcome this 

limitation and speed up the simulation, a random number generation method, suggested by 

Whuber (2017), is used that can generate numbers that are random, and at the same time, 

show a specific amount of correlation with another variable (Whuber 2017; for more details 

also visit the Supsim project website at https://supsim.netlify.app/). The next section explains 

the method for randomly generating correlated, normally distributed vectors x1 and x2. 

2.2 The Method for Randomly Generating Correlated, Normally Distributed Vectors x1 and x2 

According to Whuber's method (2017), the algorithm shown in panel A of Figure 1 first 

randomly chooses a normal vector x1 and then chooses another normal, random vector a with 

the same length, mean, and standard deviation as 𝑥1. Next it applies a transformation to a to 

calculate b in a way that the correlation between b and 𝑥1 is set to the desired amount (r). 

Such a transformation is described in Equation (4) where d is the vector of residuals resulted 

from regressing a on 𝑥1, 𝜎𝑑  represents the standard deviation of d, and 𝜎𝑥1
represents the 

standard deviation of 𝑥1. It should be noted that such a transformation changes the initial 

distribution properties in b vector. Therefore, in order to return b to a mean and a standard 

deviation similar to 𝑥1, 𝑥2= mb+n is used as the final random, correlated, normal vector, 

where m= 𝜎𝑥1
/ 𝜎𝑏 and n= 𝜇𝑥1

-m.𝜇𝑏. 
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𝑏 = 𝑟. 𝜎𝑑 . 𝑥1 + 𝑑. 𝜎𝑥1
. √1 − 𝑟2                                           (4) 

 

3. RESULTS 

3.1 The Distribution of Large-Scale Samples of RTM's among Regions of Friedman and 

Wall's Graph  

Random production of RTM’s enables them to freely scatter among the regions of Friedman 

and Wall’s graph so that it is possible to determine the probability of RTM’s falling within 

each region (see Figure 2, panels A through C). With noise magnitude = 0.05, the distribution 

of a large-scale sample of RTM's (N = 10,000) is shown on Figure 2. The results show that 

the regular graph is filled by 49.55% of RTM’s (see Figure 2, panel A), and another 49.7% of 

RTM’s are scattered among four regions of the reverse graph (see Figure 2, panel B), and 

only 0.38% of RTM’s are fallen within the two regions of the classical suppression graph (see 

Figure 2, panel C). Figure 2 also shows that the redundancy regions on both regular and 

reverse graphs are most likely to be filled by RTM’s so that the total probability of 

“redundancy regions” is equal to 50.62%. The total probability of “region I enhancement” on 

all the three graphs is equal to 24.36%, and the total probability of “region IV enhancement” 

on all the three graphs is equal to 9.8%. And finally, the total probability of the “region III 

suppression” on both regular and reverse graphs is equal to 14.89%. An important point here 

is that for all random RTM's shown in Figure 2, when the noise magnitudes are close to 0, fit 

levels are near 1, as it is evident from 𝑅2 values on all the three graphs (see Figure 2, panels 

A through C). 

To further investigate the effects of noise on the way in which RTM’s scatter among four 

regions of Friedman and Wall’s graph, six more random large-scale samples of RTM’s (all 

N’s = 10,000) were taken with different noise magnitudes including 0.2, 0.7, 1.3, 2.0, 2.7, and 
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3.0 to estimate the probabilities of each of the four regions being filled by RTM’s as the noise 

magnitude is gradually grows to 3.0. Results showed that despite the increased noise 

magnitudes the above mentioned probabilities almost remain constant. However, as it is 

expected the fit levels decreased with increased noise magnitudes. 



 

 

 
A: The Iterative Process of the RTM Generation Algorithm B: Screenshots from the User-interface of the Web-based JavaScript Version of Supsim 

 
Notes for Panel A: 
*: "e" is a distribution of errors of the same length as Yo (or original Y), while mean and standard 
deviation of "e" is determined arbitrarily by the user as a proportion of mean and standard deviation of 

Yo. "e" enables users to control the fit levels of the RTM's. 

**: arguments (or arg's) are arbitrarily selected by the users to limit the magnitude of 𝑟𝑦1and 𝑟𝑦2. By 

using arg's, users control the amount of 𝑟𝑦1 and 𝑟𝑦2. 

***: There are two kinds of "allowed range" for 𝑟12 in Supsim: first, the default allowed range is 

defined by "𝑟𝑦1 × 𝑟𝑦2 − √(1 − 𝑟𝑦1
2 ) (1 − 𝑟𝑦2

2 )  ≤  𝑟12 ≤  𝑟𝑦1 × 𝑟𝑦2 + √(1 − 𝑟𝑦1
2 ) (1 − 𝑟𝑦2

2 )"; 

Second, users are allowed to further limit the magnitude of 𝑟12 by selecting an arbitrary range between 
0 and 1. 

****: arg's about the amount of 𝑅2 enhancement enable users to arbitrarily control the levels of 𝑅2 
enhancement by selecting a proportion between 0 and 1 (see Users Guide for Supsim for more details). 

 

 

Figure 1: Flowchart of the RTM Generation Algorithm and Screenshots from the JavaScript version of Supsim 

https://supsim.netlify.app/Users%20Guide%20for%20Supsim.pdf


 

 

A: The 𝑅2
 values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Regular Graph 

 
B: The  𝑅2 values for thousands of RTM's Scattered among Regions of Friedman and Wall’s Reverse Graph 

 
  C: The 𝑅2 values for RTM's Scattered among Regions of Friedman and Wall’s Classical Suppression Graph 

 

Figure 2: Distribution of a Large-Scale Sample of RTM’s (N = 10,000) among the 

Regions of Friedman and Wall’s Graph 
 

 
 

 



 

3.2 The Results of Case Studies on Unique RTM’s  

The "Supsim" allows users to set constraints on the magnitudes of 𝑟𝑦1, 𝑟𝑦2, 𝑟12, noise, and the 

levels of 𝑅2 enhancement to facilitate the production of single cases of RTM’s with unique 

characteristics that are useful for specific purposes like case studies on unique RTM’s (see 

Users Guide for Supsim for more details). The next section is devoted to case studies on 

unique RTM’s created by fixed pairs of 𝑟𝑦1 and 𝑟𝑦2. The authors primarily focus on the most 

challenging situation defined by Hamilton (1987) in which 𝑟𝑦1 and 𝑟𝑦2 are both close to 0 but 

𝑅2 and |𝑟12| are both near 1 and then extend the discussion to other suppression situations.   

A Comparison among 3D Scatterplots of Unique RTM’s drawn from Redundancy 

versus Enhancement/Suppression Regions  

Sampling from the enhancement regions (i.e., regions I and regions IV on Friedman 

and Wall's graphs) with predetermined constraints on "𝑅2 enhancement" and "absolute values 

of 𝑟𝑦1 and 𝑟𝑦2" was carried out by using Supsim to produce three unique RTM’s with 

different proportions of 𝑅2 
enhancement (see Figure 3, panels A, C, and E) as well as two 

unique RTM’s with matched absolute values of 𝑟𝑦1 and 𝑟𝑦2 but different proportions of 𝑅2 

enhancement (see Figure 4, panels A and C). Also sampling from redundancy region and 

region II suppression was performed by using Supsim to generate RTM’s from redundancy 

and suppression regions (see Figure 3, panels B, D, and F, and Figure 4, panels B and D for 

more details). It should be noted that 𝑅2 values in Figure 3 were matched between panels A 

and B, C and D, as well as E and F. The 𝑅2 values also were matched between panels A and 

B, C and D in Figure 4. For RTM’s drawn from enhancement regions, the specific constraints 

were “|𝑟𝑦1| >  |𝑟𝑦2|”, “|𝑟𝑦1| ≤ 0.08”, “|𝑟𝑦2| ≤ 0.08”, “𝑅2 > (𝑟𝑦1
2 + 𝑟𝑦2

2 ) + 0.05”. Different 

noise magnitudes were used in producing these RTM's (see Figure 3 and Figure 4 for more 

https://supsim.netlify.app/Users%20Guide%20for%20Supsim.pdf


 

details). Then the 3D scatterplots with regression surfaces were drawn for each of the unique 

RTM’s in Figure 3 and Figure 4. 
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 A: Region I enhancement (Enhancement = 0.11)  

𝑹𝟐= 0.119   𝑟𝑦1= 0.08   𝑟𝑦2= 0.008   𝑟12= -0.965 

β1= 1.322  β2= 1.284; noise magnitude = 2.00 

C: Region I enhancement (Enhancement =0.483)  

𝑹𝟐= 0.492  𝑟𝑦1= 0.07  𝑟𝑦2= 0.065  𝑟12= -0.981  β1= 

3.635  β2= 3.632; noise magnitude = 1.00 

E:  Classical Suppression ( Enhancement = 0.995)  

𝑹𝟐= 0.999 𝑟𝑦1= -0.056 𝑟𝑦2= -0.00036 𝑟12= -0.996 

β1= -17.674  β2= -17.647; noise magnitude = 0.04 
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 B: Redundancy (RTM without Suppression) 

𝑹𝟐= 0.115   𝑟𝑦1= 0.27 𝑟𝑦2= -0.21 𝑟12= -0.212 

β1= 0.227  β2= -0.209; noise magnitude = 2.00 

D: Redundancy (RTM without Suppression) 

𝑹𝟐= 0.49  𝑟𝑦1= 0.688  𝑟𝑦2= 0.657  𝑟12= 0.86  β1= 0.47  

β2= 0.253; noise magnitude = 1.00 

F: Redundancy (RTM without Suppression) 

𝑹𝟐= 0.998   𝑟𝑦1= -0.856   𝑟𝑦2= -0.548   𝑟12= 0.056 

β1= -0.837  β2= -0.501; noise magnitude = 0.04 

Figure 3: Matched Scatterplots from Enhancement Regions Compared to Redundancy Regions (Matched for 𝑹𝟐) 
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A: Region I enhancement ( Enhancement = 0.121) 

𝑹𝟐=0.128 𝑟𝑦1= -0.07 𝑟𝑦2= -0.03 𝑟12= -0.956 β1=-1.215 β2= -1.194; noise magnitude= 2 

C: Region I Enhancement  (Enhancement =0.99) 

𝑹𝟐= 0.997 𝑟𝑦1= 0.07 𝑟𝑦2= -0.03 𝑟12= 0.994 β1= 9.48    β2= -9.46; noise magnitude = 0.05 
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B: Region III Suppression 

𝑹𝟐=0.128 𝑟𝑦1= -0.349 𝑟𝑦2= -0.116 𝑟12=0.523 β1= -0.396 β2=0.091; noise magnitude= 2 

D: Region III Suppression 

𝑹𝟐=0.997 𝑟𝑦1=0.901 𝑟𝑦2=0.801 𝑟12=0.981 β1= 3.07 β2= -2.211; noise magnitude = 0.05 

Figure 4: Matched Scatterplots of Enhancement Situations Compared to Region III Suppression (Matched for 𝑹𝟐or Zero-Order Correlations) 



 

A comparison between 3D scatterplots of RTM's from enhancement regions (Figure 

3, panels A, C, and E) and those of redundancy regions (Figure 3, panels B, D, and F) shows 

that contrary to RTM's from redundancy regions in which the patterns of scattered points are 

all consistent with their respective 𝑅2 values, there are no consistency between the patterns of 

scattered points and the 𝑅2 values for RTM's drawn from enhancement regions. For panels A, 

C, and E in Figure 3, the values of y are almost independent from the values of x1 and x2 

which is evident from the scattered dots being almost orthogonal to the plane spanned by x1 

and x2 in all the three scatterplots. Indeed, for panels A, C, and E while x1 and x2 are highly 

sensitive to each other’s variability (i.e., all |𝑟12|’s ≥ 0.965) they are almost indifferent to the 

variability in y. Surprisingly, however, not only the three 𝑅2 
values are not near 0 but also 

they are considerably different from each other as a function of different |𝑟12| values (the 𝑅2 

values are 0.119, 0.492, and 0.997 respectively for panels A, C, and E of Figure 3). Consider, 

for example, the scattered dots on Figure 3, panel E. The possibility interval of 𝑟12 here is -

0.99841 to 0.99845, and the regression surface is almost parallel to the y axis and orthogonal 

to the plane spanned by x1 and x2. Indeed, both the regression surface and the scattered points 

on panel E of Figure 3 suggest that 𝑅2 value must be close to 0, while the observed value of 

𝑅2 
is 0.999 (i.e., near 1). Although, apparently the observed 𝑅2 = 0.999 in panel E is 

calculated correctly, because the residuals here are near 0, and it is well known that 𝑅2 has 

been defined as a function of residuals (Kvalseth 1985; Alexander, Tropsha, and Winkler 

2015), but still something is wrong:  

Panel E in Figure 3 is an extreme example of what first described by Hamilton (1987), a 

suppression situation with 𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2  in which 𝑟𝑦1 and 𝑟𝑦2 are both close to 0 but 𝑅2 

and |𝑟12| are both near 1. Hamilton (1987) shows that in this situation when 𝑅2 = 1 and 𝑟𝑦2 = 

0 the following equality can be obtained from formula (3) above: 



 

𝑟12
2 = 1 −  𝑟𝑦1

2                                                               (5) 

Note that by moving "− 𝑟𝑦1
2 " to the left side of equality (5) the following equality is obtained: 

𝑅2 = 𝑟12
2 + 𝑟𝑦1

2 = 1                                                        (6) 

Readers see that under the condition of 𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2  when 𝑅2 = 1, 𝑟𝑦2 = 0, and also 𝑟𝑦1 is 

approximately close to 0 as it is the case in panel E of Figure 3, formula (3) tends to 

approximately substitute the value of 𝑟12
2  for the value of 𝑅2. Indeed, panel E shows a 𝑅2 = 

0.999 despite the fact that x1 and x2 only react strongly to each other's variability (𝑟12= -

0.996), but they are almost indifferent to the variation in y as it is evident from 𝑟𝑦1
2 + 𝑟𝑦2

2 =

 (−0.056)2 +  (−0.00036)2 = 0.003. In panel E of Figure 3 both the slope of the regression 

surface and the pattern of scattered points are almost parallel to the y axis and orthogonal to 

the plane spanned by both x1 and x2. Although regulating the slope in this way causes the 

residuals to be close to 0 and in turn the 𝑅2 value to be close to 1, this cannot be correct 

because it simultaneously tends to approximately substitute the value of 𝑟12
2  for the value of 

𝑅2 while the actual value of 𝑅2 
in this example must be close to 0. Therefore, the slope 

regulation appears to be extremely incorrect here which in turn dramatically affects the 

resulting values of the observed 𝑅2, 𝛽̂1 and 𝛽̂2. The slope regulation error (SRE) here is 

evident from the inflation of the regression coefficients (IRC) which is very sever in this case 

compared to an equivalent model with the same values of 𝑟y1 and 𝑟y2 but 𝑟12= 0. Given that 

in a model in which 𝑟12= 0 then 𝑟y1 = 𝛽̂1 and 𝑟y2 = 𝛽̂2 while in cases where 𝑟12 ≠ 0 both |𝛽̂1| 

and |𝛽̂2| deviate from the respective |𝑟y1| and |𝑟y2| values, the authors suggest quantifying 

the severity of IRC by a novel index that hereafter referred to as absolute beta-to-correlation 

ratio (or |𝐵𝐶|). The |𝐵𝐶| is defined as follows: 



 

|𝐵𝐶| = |
the standardized regression coefficient

the respective zero-order correlation with "y"
|                              (7) 

In Figure 3, panel E, the |𝐵𝐶| for 𝛽̂1 equals 315.61 and it means that |𝛽̂1| is more than 315 

times greater than |𝛽̂1| in an equivalent model with 𝑟12 = 0. And the |𝐵𝐶| for 𝛽̂2 equals 

49019.45 and it means that |𝛽̂2| is more than 49000 times greater than |𝛽̂2| in an equivalent 

model with 𝑟12 = 0. In contrast, scatterplots from redundancy regions (see panels B, D, and F 

in Figure 3) show no sign of IRC. For example, in panel F of Figure 3, relatively large values 

of 𝑟y1 and 𝑟y2, but not necessarily a large value of 𝑟12, is needed to obtain a 𝑅2 value as large 

as 0.998. in fact, the |𝐵𝐶| ratios for those RTM's drawn from redundancy regions are always 

equal to or smaller than 1 indicating the absence of IRC as it is evident from panels B, D, and 

F in Figure 3.   

Scatterplots on Figure 4 help further explain the issue of IRC in enhancement regions 

compared to region III suppression. Note that in Figure 3 panels A and B, as well as panels C 

and D have been matched for 𝑅2 values. Panels A and C also have been matched for their 

zero-order correlations with y. The possible interval of 𝑟12 in both panels A and C of Figure 4 

is between -0.995 and 0.9992. A comparison between the two enhancement situations in 

panels A and C reveals that to obtain a 𝑅2 value of 0.128 a |𝑟12| = 0.956 is needed (see panel 

A of Figure 4). And then in panel C only a 0.038 increase in |𝑟12| is needed to obtain a 𝑅2 

value of 0.997. Again, y is almost independent from both x1 and x2 in both panels A and C. 

But in panel A, the value of |𝑟12| = 0.956 is not strong enough to produce an orthogonal 

regression surface through generating large IRC's to obtain a 𝑅2 value near 1. Indeed, panel 

A needs only a 0.038 increase in |𝑟12| value to perform as strong as panel C of Figure 4 in 

enhancing the 𝑅2 up to 0.997. The |𝐵𝐶| ratios are 17.36 and 39.8 respectively for 𝛽̂1 and 𝛽̂2 

in panel A of Figure 4 compared to 135.43 and 315.34 respectively for 𝛽̂1 and 𝛽̂2 in panel C 



 

of Figure 4. Similarly, IRC is always present in RTM’s drawn from region III suppression 

(see panels B and D in Figure 4). For instance, the |𝐵𝐶| ratios for panel B of Figure 4 are 

1.135 and 0.784 respectively for 𝛽̂1 and 𝛽̂2, while they are more sever for panel D of Figure 4 

as they are 3.41 and 2.76 respectively for 𝛽̂1 and 𝛽̂2.  

So far the readers have seen that IRC may not occur in two-predictor models falling within 

redundancy regions while it is always present in models drawn from region III suppression, 

region I or region IV enhancement. These conclusions have already been verified by 

Friedman and Wall's (2005) definitions for each of the four regions on their graph.  

As equality (6) and panel E in Figure 3 simultaneously show in Hamilton's (1987) extreme 

example an extreme SRE, which is evident from the sever standardized beta inflation (or 

IRC), occurs which is apparently related to the tendency of formula (3) to substitute the value 

of 𝑟12
2  for the value of 𝑅2 under the extreme condition defined by Hamilton (1987). By taking 

a closer look at underlying mathematical concepts of suppression situations and referring to 

the important issue of "statistical control" in two-predictor linear regression, the next section 

presents the results of further case studies on RTM's which warns researchers against the 

issue of IRC in suppression situations. 

The Statistical Control Function: Quantifying the Statistical Control Part in RTM's 

Drawn from Redundancy Regions versus Those Drawn from Suppression Regions 

The authors believe that comparing the mechanisms of statistical control between two-

predictor regression models with or without a two-predictor suppression effect may provide 

important insights into the effects of multicollinearity on the results of two-predictor linear 

regression models. When a second predictor x2 is entered into the regression equation, 

multicollinearity between x1 and x2 raises the issue of statistical control. To better understand 

the effects of multicollinearity the authors suggest equality (8) that can be derived from 



 

formula (3) by moving the terms "1 − 𝑟12
2 " from the denominator to the left side of the 

equation, multiplying them by 𝑅2 and then moving the term "−𝑅2𝑟12
2 " to the right side: 

𝑅2 =  𝑟𝑦1
2 + 𝑟𝑦2

2 − (2 𝑟𝑦1𝑟𝑦2𝑟12) + 𝑅2𝑟12
2                                      (8) 

Equality (8) is important because it helps figure out the role of multicollinearity by 

partitioning 𝑅2 into two parts: the first two-terms which are 𝑟𝑦1
2 + 𝑟𝑦2

2  is the collinearity-

independent part (CIP), and the second two-terms which are −(2 𝑟𝑦1𝑟𝑦2𝑟12) +  𝑅2𝑟12
2  is the 

collinearity-dependent part (CDP). It should be noted that the function of −(2 𝑟𝑦1𝑟𝑦2𝑟12) +

 𝑅2𝑟12
2  (or CDP), which is added to 𝑟𝑦1

2 + 𝑟𝑦2
2  (or CIP) when calculating 𝑅2,

 
is to control for 

the common variance explained jointly by x1 and x2 in cases of multicollinearity. An 

important insight here is that although when 𝑟12 = 0 the terms −(2 𝑟𝑦1𝑟𝑦2𝑟12) +  𝑅2𝑟12
2  are 

equal to 0 but that condition is not always warrantied. Indeed, equality (8) shows that when 

redundancy is the case the 𝑅2 
formula tends to subtract a proportion of 𝑟12 from 𝑟𝑦2

2  to 

prevent the estimated value of 𝑅2 from including the common variance explained jointly by 

x1 and x2. Therefore, the terms −(2 𝑟𝑦1𝑟𝑦2𝑟12) +  𝑅2𝑟12
2  hereafter is called statistical control 

part (SCP). There is evidence that under the enhancement conditions, like those described by 

Hamilton (1987), the SCP can become positive. By obtaining equality (8) from formula (3), 

Hamilton (1987) argues that in cases where 𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2 , if 𝑟𝑦2= 0, and 𝑅2 = 1then 

𝑟12
2 = 1 − 𝑟𝑦1

2  can be obtained from formula (3) (see equalities (5) and (6) above). In fact, by 

suggesting equality (5), Hamilton (1987) has been the first to unintentionally show that in 

extreme cases where 𝑅2 = 1, 𝑟𝑦2= 0, and 𝑟𝑦1 is also approximately near 0, formula (3) almost 

tends to substitute the value of 𝑟12
2  for the value of 𝑅2 and it explains why |𝑟12| is also close 

to 1 under these conditions. Generally, when "enhancement" is the case the SCP is always 

positive adding a proportion of 𝑟12 to the value of 𝑟𝑦2
2  which in turn leads to the condition of 



 

𝑅2 >  𝑟𝑦1
2 + 𝑟𝑦2

2 . Such a function seems to the authors to be the opposite of the statistical 

control mechanism.  

The authors think that a statistical control function is inherent in formula (3) which if 

carefully quantified can help explain the causes of suppression situations. Readers know that 

when 𝑟12 = 0, 𝑅2 = 𝑟𝑦1
2 + 𝑟𝑦2

2 , while in cases where 𝑟12 ≠ 0 then the value of 𝑅2 deviates from 

the value of 𝑟𝑦1
2 + 𝑟𝑦2

2 . This explains why many texts (e.g., Cohen et al. 2003; Darlington and 

Hayes 2017) suggest the following formulas: 

𝑅𝑦.12
2 =  𝑟𝑦1

2 +  𝑠𝑟2
2                                                        (9) 

𝑠𝑟2 =  
𝑟𝑦2−𝑟𝑦1𝑟12

√1− 𝑟12
2

                                                         (10) 

Where 𝑠𝑟2 is the semipartial correlation of x2 with y and 𝑠𝑟2
2 is its squared value representing 

a proportion of the total variance in y explained by x2 over and above the variance explained 

by the previous predictor(s) in the model. In fact, when calculating 𝑅2, 𝑠𝑟2
2 is used instead of  

𝑟𝑦2
2  to prevent 𝑅2 from including the common variance explained jointly by x1 and x2 in cases 

of multicollinearity (i.e., when 𝑟12 ≠ 0). Here again if 𝑟12 = 0 then 𝑠𝑟2
2 = 𝑟𝑦2

2 , while if 𝑟12 ≠ 0 

then 𝑠𝑟2
2 deviates from 𝑟𝑦2

2 . Indeed, 𝑠𝑟2
2 in formula (9) can be divided into two parts: 

𝑠𝑟2
2 =  𝑟𝑦2

2 + 𝑆𝐶𝑃                                                      (11) 

And formula (9) can be rewritten as follows: 

𝑅𝑦.12
2 =  𝑟𝑦1

2 + 𝑟𝑦2
2 + 𝑆𝐶𝑃                                              (12) 

Therefore equality (11) gives another simple method for quantifying SCP:   

𝑆𝐶𝑃 = 𝑠𝑟2
2 −  𝑟𝑦2

2                                                      (13) 



 

As a result when 𝑟y1, 𝑟y2 and 𝑟12 are known the statistical control also can be defined as a 

function of the combination of three zero-order correlations: 

𝑆𝐶𝑃 = 𝑓(𝑟𝑦1, 𝑟𝑦2, 𝑟12) =  (
𝑟𝑦2−𝑟𝑦1𝑟12

√1− 𝑟12
2

)

2

−  𝑟𝑦2
2                            (14) 

Readers know that the first term in function (14) is equal to 𝑠𝑟2
2, and therefore function (14) 

is identical to equality (13). 

As the readers may guess, there is also a collinearity-dependent part (CDPB) in both 𝛽̂1 and 

𝛽̂2 formulas that help explain the reason why regression coefficients become inflated in 

suppression situations. The following equalities can be obtained from 𝛽̂1 and 𝛽̂2 formulas 

(see formula (2) above): 

𝛽̂1 = 𝑟𝑦1 − 𝑟𝑦2𝑟12 +  𝛽̂1𝑟12
2                                                        (15) 

𝛽̂2 = 𝑟𝑦2 − 𝑟𝑦1𝑟12 + 𝛽̂2𝑟12
2                                                        (16) 

Similarly, equalities (15) and (16) each partition the respective standardized regression 

coefficient into two parts: the first term which is 𝑟𝑦1 (or 𝑟𝑦2) is the collinearity-independent 

part (CIPB) and the second two-terms which are "−𝑟𝑦2𝑟12 +  𝛽̂1𝑟12
2 " (or "−𝑟𝑦1𝑟12 + 𝛽̂2𝑟12

2 ") is 

the collinearity-dependent part (CDPB). The collinearity-dependent part in 𝛽̂1 hereafter is 

represented by CDPB1 and the collinearity-dependent part in 𝛽̂2 is represented by CDPB2. 

Here again, when a redundancy situation holds the function of adding CDPB values to the 

values of 𝑟𝑦1 or 𝑟𝑦2 is to penalize the regression coefficients for multicollinearity. However, 

the term "penalty" can be used strictly for CDPB1  and CDPB2 values as long as no kind of 

two-predictor suppression effect exists in the model, because over the redundancy regions, 

where the effects of suppressor variables are absent, the signs of CDPB1 and CDPB2 are 



 

constantly opposite to the signs of 𝑟𝑦1 and 𝑟𝑦2, respectively, making them to constantly 

produce 𝛽̂1 and 𝛽̂2 values smaller than or equal to 𝑟𝑦1 and 𝑟𝑦2. In contrast, in region III 

suppression and both in region I and region IV enhancement, the signs of CDPB1 are always 

similar to the signs of 𝑟𝑦1 adding progressively larger proportions of 𝑟12 to 𝑟𝑦1 to produce 

inflated 𝛽̂1 values as |𝑟12| increases to its maximum value. Interestingly, over both region III 

suppression and region IV enhancement always |𝐶𝐷𝑃𝐵2|′s >  |𝑟𝑦2| and the signs of 𝐶𝐷𝑃𝐵2 

values are always the opposite of 𝑟𝑦2 making them to produce inflated 𝛽̂2 values of the 

opposite sign compared to 𝑟𝑦2. Therefore, over region III suppression and region IV 

enhancement, CDPB2 subtracts progressively larger proportions of 𝑟12 from 𝑟𝑦2 as |𝑟12| 

increases to its maximum value. Finally, in region I enhancement the signs of CDPB2 values 

are always similar to the sign of 𝑟𝑦2 adding progressively larger proportions of 𝑟12 to 𝑟𝑦2 to 

produce inflated 𝛽̂2 values as |𝑟12| increases to its maximum value. 

To verify these observations, the authors have developed another simple but important tool 

called the "suppression calculator" (or Supcalc) by using Microsoft Excel 2010 (visit 

https://supsim.netlify.app/ to download the Supcalc) that allows researchers to examine the 

effects of the levels of multicollinearity (or 𝑟12) on 𝑅2, 𝛽̂1, 𝛽̂2, 𝑠𝑟2, 𝑠𝑟2
2, SCP, CDPB1 , and 

CDPB2 while holding an arbitrary 𝑟𝑦1 and 𝑟𝑦2 constant. The Supcalc also calculates the 

multicollinearity ratios including "𝛾" and "
2𝛾

1+𝛾2
" as well as the lower and the upper limits of 

𝑟12 for each fixed pair of 𝑟𝑦1 and 𝑟𝑦2.  

Consider, three different fixed pairs of 𝑟𝑦1 and 𝑟𝑦2 which are selected arbitrarily to represent 

medium, near 0, and large values of 𝑟𝑦1
2 + 𝑟𝑦2

2 . The three pairs can be: (-0.6, -0.5), (0.0005, 

0.0003), and (0.95, -0.9). Results of calculations using Supcalc are presented in tables 1 

through 3. To further discuss the mechanisms of statistical control also for the pair (-0.6, -0.5) 

https://supsim.netlify.app/


 

all the values of 𝑅2, 𝛽̂1, and 𝛽̂2 against different 𝑟12 values are plotted in panels A through C 

of Figure 5.  

For the pair (-0.6, -0.5) the possibility interval of 𝑟12 is -0.39282 ≤ 𝑟12 ≤ 0.9928203. Table 1 

and panels A through C in Figure 5 show that when the minimum allowed value of 𝑟12 is 

used that is 𝑟12 = -0.39282 then the results of calculations done by Supcalc shows that 𝑅2 = 

𝑟𝑦1
2 +  𝑠𝑟2

2= (−0.6)2 + 0.64 = 1, 𝛽̂1 =  −0.942, 𝛽̂2 =  −0.87, 𝑠𝑟2= -0.8, 𝑠𝑟2
2 = 0.64, SCP = 

𝑠𝑟2
2 −  𝑟𝑦2

2 = 0.64 – 0.25 = 0.39, CDPB1 = -0.342, CDPB2 = -0.37. Because the latter case is a 

region I enhancement situation, the sign of SCP is positive and both the signs of CDPB1 and 

CDPB2 are similar to the sign of 𝑟𝑦1 and 𝑟𝑦2 meaning that SCP plays a role opposite to 

statistical control and both CDPB1 and CDPB2 add some proportions of 𝑟12 to 𝑟𝑦1 and 𝑟𝑦2, 

instead of penalizing them for multicollinearity making them to produce inflated |𝛽̂1| and 

|𝛽̂2| values which are respectively 1.57 and 1.74 times greater than |𝛽̂1| and |𝛽̂2| in an 

equivalent model with 𝑟12 = 0. Panel A in Figure 5, also shows that in this example where the 

minimum allowed 𝑟12 is applied 𝑆𝐶𝑃 = 1 − (𝑟𝑦1
2 +  𝑟𝑦2

2 ) = 0.39. In contrast, table 1 shows 

that if 𝑟12 = 0 then 𝑅2 = 𝑟𝑦1
2 +  𝑟𝑦2

2 = (−0.6)2 + (−0.5)2 = 0.61, 𝛽̂1 = 𝑟𝑦1 = −0.6, 𝛽̂2 =

 𝑟𝑦2 = −0.5, 𝑠𝑟2 =  𝑟𝑦2 = -0.5, 𝑠𝑟2
2 =  𝑟𝑦2

2  = 0.25, SCP = 𝑠𝑟2
2 −  𝑟𝑦2

2 = 0.25 – 0.25 = 0, CDPB1 

= 0, CDPB2 = 0 (see also panels A through C in Figure 5). An interesting insight here is that 

where 𝑟12 = 0 and 𝑅2 = 𝑟𝑦1
2 +  𝑟𝑦2

2 , the redundancy region usually begins with 𝑟12 = 0, 

whereas in special cases where  
𝑟𝑦2 

𝑟𝑦1
 is close to 1 and 𝑟𝑦1

2 +  𝑟𝑦2
2  > 1 then the redundancy 

region begins with a non-zero value of 𝑟12 which is the subject of latter discussion. If 

𝑟12 = 𝛾 =
−0.5

−0.6
= 0.833333333 then 𝑅2 = 𝑟𝑦1

2 +  𝑠𝑟2
2= (−0.6)2 + 0 = 0.36, 𝛽̂1 = 𝑟𝑦1 = −0.6, 

𝛽̂2 =  0, 𝑠𝑟2= 0, 𝑠𝑟2
2 = 0, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0 – 0.25 = – 0.25, CDPB1 = 0, CDPB2 = 

−(𝑟𝑦2) = 0.5. Readers know that 𝑟12 = 𝛾 is the end-point of the redundancy region in which 



 

the statistical control function removes the entire part of x2 by estimating 𝛽̂2 =  0 and 

𝑆𝐶𝑃 =  −𝑟𝑦2
2 , thus panel A in Figure 5 shows that 𝑆𝐶𝑃 = −0.25. In fact, when 𝑟12 = 𝛾 linear 

regression model assumes that any explained variance in y related to x2 is in common with x1 

and therefore x2 have no specific contribution to add to the explained variance in y. If 𝑟12 

= 
2𝛾

1+𝛾2
 = 0.983606557 then 𝑅2 = 𝑟𝑦1

2 +  𝑟𝑦2
2 = (−0.6)2 + (−0.5)2 = 0.61, 𝛽̂1 = −3.327, 

𝛽̂2 =  2.773, |𝑠𝑟2| =  |𝑟𝑦2 | = 0.5,  𝑠𝑟2
2 =  𝑟𝑦2

2  = 0.25, SCP = 𝑠𝑟2
2 −  𝑟𝑦2

2 = 0.25 – 0.25 = 0, 

CDPB1 = -2.727, CDPB2 = 3.2726 (also see panels A through C in Figure 5). Although in the 

latter case SCP is 0 and again 𝑅2 = 𝑟𝑦1
2 +  𝑟𝑦2

2 , contrary to situations where 𝑟12 =0, CDPB1 and 

CDPB2 here are quite large creating inflated 𝛽̂1 and 𝛽̂2 with |𝛽̂1| being 5.545 times greater 

than |𝛽̂1 |in an equivalent model with 𝑟12 = 0 and |𝛽̂2| being 5.546 times greater than |𝛽̂2| in 

an equivalent model with 𝑟12 = 0. Another important insight here is that as |𝑟12| increases 

beyond the value of |𝛾| the statistical control mechanism is weakened gradually so that by 

|𝑟12| = |
2𝛾

1+𝛾2| the penalty level against multicollinearity reaches 0 (i.e., SCP = 0; see panels A 

through C in Figure 5). Finally, if the maximum allowed value of 𝑟12 is used that is 𝑟12 = 

0.992820323 then 𝑅2 = 𝑟𝑦1
2 +  𝑠𝑟2

2= (−0.6)2 + 0.64 = 1, 𝛽̂1 =  −7.24, 𝛽̂2 =  6.6881, 𝑠𝑟2= 

0.79999861, 𝑠𝑟2
2 = 0.64, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0.64 – 0.25 = 0.39, CDPB1 = -6.64, CDPB2 = 

7.1881. Again here 𝑆𝐶𝑃 = 1 − (𝑟𝑦1
2 +  𝑟𝑦2

2 ) = 0.39 but both CDPB1 and CDPB2 show that the 

IRC error here is much more sever so that |𝛽̂1| and |𝛽̂2| are respectively 12.07 and 13.376 

times greater than |𝛽̂1| and |𝛽̂2| in an equivalent model with 𝑟12 = 0. 

Now consider the pair (0.0005, 0.0003) in which 𝑟𝑦1 and 𝑟𝑦2 are deliberately selected 

extremely close to 0 to represent the extreme example described by Hamilton (1987). The 

possible interval of 𝑟12 here is -0.99999968 ≤ 𝑟12 ≤ 0.99999998 and although both 𝑟𝑦1 and 𝑟𝑦2 

are extremely close to zero of course this is not a classical suppression situation, because both 



 

γ and 
2𝛾

1+𝛾2 are non-zero (see Table 2). Table 2 show that if 𝑟12 = -0.99999968 then 𝑅2 = 

𝑟𝑦1
2 +  𝑠𝑟2

2= 0.00000025 + 0.99999975 = 1, 𝛽̂1 = 1250, 𝛽̂2 = 1249.9999, 𝑠𝑟2 = 0.999999875, 

𝑠𝑟2
2 = 0.99999975, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0.99999975 – 0.00000009 = 0.99999966, CDPB1 = 

1249.9995, CDPB2 = 1249.9996. Here again 𝑆𝐶𝑃 = 1 − (𝑟𝑦1
2 +  𝑟𝑦2

2 ) = 1- 0.00000034 = 

0.99999966 and an extremely sever IRC error occurs in which |𝛽̂1| and |𝛽̂2| are respectively 

2,500,000 and 4,100,000 times greater than |𝛽̂1| and |𝛽̂2| in an equivalent model with 𝑟12 = 0. 

As an instance of Hamilton's extreme example (1987), it is also obvious that 𝑅2 here is 

approximately replaced with the value of 𝑟12
2 . Similarly, if 𝑟12 reaches its maximum value that 

is 𝑟12= 0.99999998 then 𝑅2 = 𝑟𝑦1
2 + 𝑠𝑟2

2= 0.00000025 + 0.99999975 = 1, 𝛽̂1 = 5000.00021, 

𝛽̂2= -4999.99981, 𝑠𝑟2 = −0.999999881, 𝑠𝑟2
2 = 0.99999975, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0.99999975 

– 0.00000009 = 0.99999966, CDPB1 = 4999.99971, CDPB2 = - 5000.0001. Although again 

𝑆𝐶𝑃 = 1 − (𝑟𝑦1
2 + 𝑟𝑦2

2 ) = 1- 0.00000034 = 0.99999966 the CDPB values indicate an even 

more extreme IRC error here so that |𝛽̂1| and |𝛽̂2| are respectively 10,000,000 and 

16,666,666 times greater than |𝛽̂1| and |𝛽̂2| in an equivalent model with 𝑟12 = 0. Finally, 

predictably if 𝑟12 = 0 then 𝑅2 = 𝑟𝑦1
2 +  𝑟𝑦2

2 = 0.00000025 + 0.00000009 = 0.00000034, 

𝛽̂1 = 𝑟𝑦1 = 0.0005, 𝛽̂2 = 𝑟𝑦2 = 0.0003, 𝑠𝑟2 = 𝑟𝑦2 = 0.0003, 𝑠𝑟2
2 = 𝑟𝑦2

2 = 0.00000009, SCP 

= 𝑠𝑟2
2 −  𝑟𝑦2

2 = 0.00000009 – 0.00000009 = 0, CDPB1 = 0, and CDPB2 = 0. 

 



 
Table 1: Supcalc Calculations for 𝑟𝑦1 = −0.6, 𝑟𝑦2 = −0.5, 𝑛 = 25 

γ = 0.833333333 Lower limit of 𝒓𝟏𝟐 = -0.39282 

𝟐𝜸 𝟏 + 𝜸𝟐⁄  = 0.983606557 Upper limit of 𝒓𝟏𝟐 = 0.9928203 

Range* of 𝒓𝟏𝟐 𝑹𝟐 𝜷̂𝟏 𝜷̂𝟐 𝒔𝒓𝟐
𝟐 SCP CDPB1  CDPB2  𝐒𝐄𝛃̂'s 

Max=0.992820323 1.000 -7.240 6.688 0.640 0.390 -6.640 7.188 0.000 

0.99 0.80402 -5.28 4.72 0.444 0.194 -4.68 5.22 0.669 

ratio=0.983606557 0.610 -3.327 2.773 0.250 0.000 -2.727 3.273 0.738 

0.90 0.36842 -0.79 0.21 0.008 -0.241 -.189 0.710 0.389 

γ = 0.833333333 0.360 -0.600 0.000 0.000 -0.250 0.000 0.500 0.309 

0.80 0.36111 -0.56 -0.06 0.001 -0.249 0.044 0.44 0.284 

0.70 0.37255 -0.49 -0.16 0.013 -0.237 0.11 0.34 0.236 

0.60 0.39063 -0.47 -0.22 0.031 -0.219 0.131 0.28 0.208 

0.50 0.41333 -0.47 -0.27 0.053 -0.197 0.133 0.23 0.189 

0.40 0.44048 -0.48 -0.31 0.080 -0.17 0.123 0.19 0.174 

0.30 0.47253 -0.49 -0.35 0.113 -0.137 0.105 0.148 0.162 

0.20 0.51042 -0.52 -0.40 0.150 -0.099 0.079 0.10 0.152 

0.10 0.55556 -0.56 -0.44 0.196 -0.054 0.044 0.055 0.143 

0.00 0.61000 -0.60 -0.50 0.250 0.000 0.000 0.000 0.133 

-0.10 0.67677 -0.66 -0.57 0.317 0.067 -0.056 -0.065 0.122 

-0.20 0.76042 -0.73 -0.65 0.400 0.15 -0.129 -0.146 0.106 

-0.30 0.86813 -0.82 -0.75 0.508 0.258 -0.224 -0.247 0.081 

Min=-0.392820323 1.000 -0.942 -0.870 0.640 0.390 -0.342 -0.370 0.000 

-0.40 1.01190 -0.95 -0.88 0.652 0.4 -0.352 -0.381 - 

-0.50 1.21333 -1.13 -1.07 0.853 0.6 -0.533 -0.567 - 

-0.60 1.51563 -1.41 -1.34 1.156 0.9 -0.806 -0.844 - 

-0.70 2.01961 -1.86 -1.80 1.660 1.4 -1.26 -1.304 - 

-0.80 3.02778 -2.78 -2.72 2.668 2.41 -2.17 -2.22 - 

-0.90 6.05263 -5.53 -5.47 5.693 5.44 -4.92 -4.97 - 

-0.99 60.50251 -55.03 -54.97 60.143 59.9 -54.89 -54.48 - 
 

Table 2: Supcalc Calculations for 𝑟𝑦1 = 0.0005, 𝑟𝑦2 = 0.0003, 𝑛 = 25 

γ = 0.6 Lower limit of 𝒓𝟏𝟐 = -0.99999968 

𝟐𝜸 𝟏 + 𝜸𝟐⁄  = 0.882352941 Upper limit of 𝒓𝟏𝟐 = 0.99999998 

Range* of 𝒓𝟏𝟐 𝑹𝟐 𝜷̂𝟏 𝜷̂𝟐 𝒔𝒓𝟐
𝟐 SCP CDPB1  CDPB2  𝐒𝐄𝛃̂'s 

Max=0.99999998 1.000 5000.0 -4999.99 0.99999975 0.99999966 4999.99971 -5000.0 0.000 

0.99 0.0000022 0.01020 -0.009799 0.0000019 0.0000018 0.0097010 -0.0100990 1.51133817 

0.90 0.0000004 0.00121 -0.000789 0.0000001 0.0000000 0.0007105 -0.0010895 0.48911589 

ratio=0.882352941 0.00000034 0.0010625 0.0006375 0.00000009 0.0000000 0.0005625 -0.0009375 0.45305145 

0.80 0.0000003 0.00072 -0.000278 0.0000000 -0.000000 0.0002222 -0.0005778 0.35533447 

0.70 0.0000003 0.00057 -0.000098 0.0000000 -0.000000 0.0000686 -0.0003980 0.29854067 

γ =0.60 0.0000003 0.00050 0.000000 0.0000000 -0.000000 0.0000000 -0.0003000 0.26650086 

0.50 0.0000003 0.00047 0.000067 0.0000000 -0.000000 -0.0000333 -0.0002333 0.24618295 

0.40 0.0000003 0.00045 0.000119 0.0000000 -0.000000 -0.0000476 -0.0001810 0.23262102 

0.30 0.0000003 0.00045 0.000165 0.0000000 -0.000000 -0.0000495 -0.0001352 0.22349505 

0.20 0.0000003 0.00046 0.000208 0.0000000 0.0000000 -0.0000417 -0.0000917 0.21759704 

0.10 0.0000003 0.00047 0.000253 0.0000001 0.0000000 -0.0000253 -0.0000475 0.21427475 

0.00 0.0000003 0.00050 0.000300 0.0000001 0.0000000 0.0000000 0.0000000 0.21320068 

-0.10 0.0000004 0.00054 0.000354 0.0000001 0.0000000 0.0000354 0.0000535 0.21427474 

-0.20 0.0000004 0.00058 0.000417 0.0000002 0.0000001 0.0000833 0.0001167 0.21759702 

-0.30 0.0000005 0.00065 0.000495 0.0000002 0.0000001 0.0001484 0.0001945 0.22349502 

-0.40 0.0000005 0.00074 0.000595 0.0000003 0.0000002 0.0002381 0.0002952 0.23262099 

-0.50 0.0000007 0.00087 0.000733 0.0000004 0.0000003 0.0003667 0.0004333 0.24618290 

-0.60 0.0000008 0.00106 0.000938 0.0000006 0.0000005 0.0005625 0.0006375 0.26650079 

-0.70 0.0000011 0.00139 0.001275 0.0000008 0.0000007 0.0008922 0.0009745 0.29854056 

-0.80 0.0000016 0.00206 0.001944 0.0000014 0.0000013 0.0015556 0.0016444 0.35533424 

-0.90 0.0000032 0.00405 0.003947 0.0000030 0.0000029 0.0035526 0.0036474 0.48911520 

-0.99 0.0000320 0.04005 0.039950 0.0000318 0.0000317 0.0395503 0.0396497 1.51131562 

Min=-0.99999968 1.000 1250.00 1249.9999 0.99999975 0.99999966 1249.99955 1249.99965 0.000 

 

Note: SCP = statistical control part; CDPB1= collinearity-dependent part of 𝛽1; CDPB2 = collinearity-dependent part of 𝛽2; 𝑆𝐸𝛽̂'s = standard errors of 𝛽̂'s; Min = minimum allowed value of 𝑟12; 

Max = maximum allowed value of 𝑟12; ratio = 2𝛾 1 + 𝛾2⁄ ; *: The possibility interval of 𝑟12 is highlighted in gray in 𝑟12 columns; 



 

Table 3: Supcalc Calculations for 𝑟𝑦1 = 0.95, 𝑟𝑦2 = −0.9, 𝑛 = 25 

γ = -0.94736842 Lower limit of 𝒓𝟏𝟐 = -0.991106576 

𝟐𝜸 𝟏 + 𝜸𝟐⁄  = -0.99854015 Upper limit of 𝒓𝟏𝟐 = -0.718893424 

Range* of 𝒓𝟏𝟐 𝑹𝟐 𝜷̂𝟏 𝜷̂𝟐 𝒔𝒓𝟐
𝟐 SCP CDPB1  CDPB2  𝐒𝐄𝛃̂'s 

0.99 171.126 92.513 -92.487 170.22 169.41 91.563 -91.587 - 

0.90 17.113 9.263 -9.237 16.211 15.401 8.313 -8.337 - 

0.80 8.557 4.639 -4.611 7.654 6.844 3.689 -3.711 - 

0.70 5.705 3.098 -3.069 4.802 3.992 2.148 -2.169 - 

0.60 4.279 2.328 -2.297 3.376 2.566 1.378 -1.397 - 

0.50 3.423 1.867 -1.833 2.521 1.711 0.917 -0.933 - 

0.40 2.853 1.560 -1.524 1.950 1.140 0.610 -0.624 - 

0.30 2.446 1.341 -1.302 1.543 0.733 0.391 -0.402 - 

0.20 2.140 1.177 -1.135 1.238 0.428 0.227 -0.235 - 

0.10 1.903 1.051 -1.005 1.000 0.190 0.101 -0.105 - 

0.00 1.713 0.950 -0.900 0.810 0.000 0.000 0.000 - 

-0.10 1.557 0.869 -0.813 0.655 -0.155 -0.081 0.087 - 

-0.20 1.428 0.802 -0.740 0.525 -0.285 -0.148 0.160 - 

-0.30 1.318 0.747 -0.676 0.416 -0.394 -0.203 0.224 - 

-0.40 1.224 0.702 -0.619 0.322 -0.488 -0.248 0.281 - 

-0.50 1.143 0.667 -0.567 0.241 -0.569 -0.283 0.333 - 

-0.60 1.073 0.641 -0.516 0.170 -0.640 -0.309 0.384 - 

-0.70 1.011 0.627 -0.461 0.108 -0.702 -0.323 0.439 - 

Max=-0.718893424 1.000 0.627 -0.449 0.098 -0.712 -0.323 0.451 0.000 

-0.80 0.957 0.639 -0.389 0.054 -0.756 -0.311 0.511 0.074 

-0.90 0.913 0.737 -0.237 0.011 -0.799 -0.213 0.663 0.144 

γ = -0.94736842 0.9025 0.950 0.000 0.000 -0.810 0.000 0.900 0.208 

-0.99 0.985 2.965 2.035 0.082 -0.728 2.015 2.935 0.186 

Min=-0.991106576 1.000 3.276 2.347 0.098 -0.712 2.326 3.247 0.000 

Note: SCP = statistical control part; CDPB1 = collinearity-dependent part of 𝛽1; CDPB2 = collinearity-dependent 

part of 𝛽2; 𝑆𝐸𝛽̂'s = standard errors of 𝛽̂'s; Min = minimum allowed value of 𝑟12; Max = maximum allowed 

value of 𝑟12; ratio = 2𝛾 1 + 𝛾2⁄ ; *: The possibility interval of 𝑟12 is highlighted in gray in 𝑟12 columns; 

 

 



 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A:  Changes in 𝑹𝟐 due to changes in both 𝒓𝟏𝟐 and SCP B: Changes in 𝜷̂𝟏due to changes in both 𝒓𝟏𝟐 and CDPB1 C: Changes in 𝜷̂𝟐 due to changes in both 𝒓𝟏𝟐 and CDPB2 

a: Region I: Enhancement: When calculating the 

𝑅2 value, SCP adds progressively greater proportions 

of 𝑟12 to 𝑟𝑦2
2  as 𝑟12 approaches its minimum value.  

b: Region II: Redundancy: SCP penalizes 𝑅2 for 

multicollinearity by subtracting progressively greater 

proportions of 𝑟12 from 𝑟𝑦2
2   as 𝑟12 approaches  𝛾.   

c: Region III: Suppression: SCP subtracts 

progressively smaller proportions of 𝑟12 from 𝑟𝑦2
2   as 

𝑟12 approaches until the penalty level against 

multicollinearity reaches 0 by 𝑟12 =  2𝛾 1 + 𝛾2⁄ . 

d: Region IV: Enhancement:  When calculating the 

𝑅2 value, SCP adds progressively greater proportions 

of 𝑟12 to 𝑟𝑦2
2  as 𝑟12 approaches its maximum value. 

a: Region I: Enhancement: When calculating 𝛽̂1, CDPB1 adds 

progressively greater proportions of 𝑟12 to 𝑟𝑦1 to create inflated 𝛽̂1 values 

as 𝑟12 approaches its minimum value. The signs of CDPB1 and 𝑟𝑦1 are 

always similar in this region. 

b: Region II: Redundancy: CDPB1 penalizes 𝛽̂1 for multicollinearity 

by subtracting different proportions of 𝑟12 from 𝑟𝑦1 when calculating 𝛽̂1. 

When 𝑟12 = 0.00 or 𝑟12 =  𝛾 the penalty level against multicollinearity 

always is 0 and therefore 𝛽̂1 =  𝑟𝑦1. CDPB1 and 𝑟𝑦1 are always of opposite 

signs in this region. 

c: Region III: Suppression: CDPB1 adds progressively greater 

proportions of 𝑟12 to 𝑟𝑦1to create inflated 𝛽̂1 values as 𝑟12 approaches 

2𝛾 1 + 𝛾2⁄ . The signs of CDPB1 and 𝑟𝑦1 are always similar in this region. 

d:  Region IV: Enhancement: CDPB1 adds progressively greater 

proportions of 𝑟12 to 𝑟𝑦1to create inflated 𝛽̂1 values as 𝑟12 approaches its 

maximum value. The signs of CDPB1 and 𝑟𝑦1 are always similar in this 

region. 

a: Region I: Enhancement: When calculating 𝛽̂2, CDPB2 adds 

progressively greater proportions of 𝑟12 to 𝑟𝑦2 to create inflated 𝛽̂2 values 

as 𝑟12 approaches its minimum value. The signs of CDPB2 and 𝑟𝑦2 are 

always similar in this region. 

b: Region II: Redundancy: CDPB2 penalizes 𝛽̂2 for multicollinearity 

by subtracting progressively greater proportions of 𝑟12 from 𝑟𝑦2 as 𝑟12 

approaches  𝛾. CDPB2 and 𝑟𝑦2 are always of opposite signs in this region. 

c: Region III: Suppression: Always |CDPB2| > |𝑟𝑦2|, CDPB2 and 𝑟𝑦2 

are always of opposite signs in this region, and CDPB2 subtracts 

progressively greater proportions of 𝑟12 from 𝑟𝑦2 as 𝑟12 approaches 

2𝛾 1 + 𝛾2⁄ . Therefore, CDPB2 creates inflated 𝛽̂2 values of the opposite 

sign with respect to 𝑟𝑦2. 

d:   Region IV: Enhancement: Always |CDPB2| > |𝑟𝑦2|, CDPB2 and 𝑟𝑦2 

are always of opposite signs in this region, and CDPB2 subtracts 

progressively greater proportions of 𝑟12 from 𝑟𝑦2 as 𝑟12 approaches its 

maximum value. CDPB2 creates inflated 𝛽̂2 values of the opposite sign. 

Figure 5: Comparing the Statistical Control Mechanisms among Suppression and Non-Suppression Situations  



 

Readers already know that in classical suppression conditions the redundancy region and the 

region III suppression may not occur. Friedman and Wall (2005) also describe another 

condition in which the opposite is true that is only the redundancy region and the region III 

suppression may occur while enhancement is impossible and this is what happens with the 

pair (0.95, -0.9). According to Friedman and Wall (2005) if 𝛾 is close to 1 and 𝑟𝑦1
2 +  𝑟𝑦2

2  ≥ 1 

the redundancy region holds over a large interval of 𝑟12, the region III suppression occurs in a 

small range and no area remains for enhancement. For the pair (0.95, -0.9) the possible 

interval of 𝑟12 is -0.991106576 ≤ 𝑟12 ≤ -0.718893424. Here the redundancy region begins 

with 𝑟12 = -0.718893424 which is the greatest possible value of 𝑟12. Therefore, If 𝑟12 = -

0.718893424 then 𝑅2 = 𝑟𝑦1
2 +  𝑠𝑟2

2= (0.95)2 + 0.0975 = 1, 𝛽̂1 =  0.6271, 𝛽̂2 =

 −0.449203, 𝑠𝑟2= -0.3122499, 𝑠𝑟2
2 = 0.0975, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0.0975 – 0.81 = -0.7125, 

CDPB1 = -0.32293, CDPB2 = 0.4508. Because in this example 𝑟𝑦1
2 +  𝑟𝑦2

2 = 1.7125 is greater 

than 1, the SCP penalizes 𝑟𝑦2
2  by 0.7125 to prevent the resulting value of 𝑅2 from including 

the shared variance explained jointly by x1 and x2. The signs of both CDPB1 and CDPB2 are 

also opposite to the signs of 𝑟𝑦1 and 𝑟𝑦2 to penalize 𝛽̂1 and 𝛽̂2 for multicollinearity. And If 𝑟12 

=  𝛾 = -0.947368421 then 𝑅2 = 𝑟𝑦1
2 +  𝑠𝑟2

2= (0.95)2 + 0.000 = 0.9025, 𝛽̂1 = 𝑟𝑦1 = 0.95, 

𝛽̂2 =  0.000, 𝑠𝑟2= 0.000, 𝑠𝑟2
2 = 0.000, SCP = 𝑠𝑟2

2 − 𝑟𝑦2
2 = 0.000 – 0.81 = -0.81, CDPB1 = 

0.000, CDPB2 = 0.9. The redundancy region ends at 𝑟12 =  𝛾 and here the model removes the 

entire part of x2 by estimating 𝛽̂2 =  0.000 and SCP = -0.81. Interestingly, while CDPB1 = 

0.000 leads to 𝛽̂1 = 𝑟𝑦1, |𝐶𝐷𝑃𝐵2| is equal to |𝑟𝑦2| though it shows the opposite sign of 𝑟𝑦2 

and as a result 𝛽̂2 =  0.000. Finally, Table 3 shows that at the left most of 𝑟12 axis where 𝑟12 

= -0.991106576, 𝑅2 = 𝑟𝑦1
2 + 𝑠𝑟2

2= (0.95)2 + 0.0975 = 1, 𝛽̂1 = 3.276, 𝛽̂2 =  2.3465, 𝑠𝑟2= 

0.3122499, 𝑠𝑟2
2 = 0.0975, SCP = 𝑠𝑟2

2 −  𝑟𝑦2
2 = 0.0975 – 0.81 = -0.7125, CDPB1 = 2.3256, 

CDPB2 = 3.2465. Although the SCP value here is equal to the SCP value in the previous 



 

redundancy situation, the fact that the values of both |𝐶𝐷𝑃𝐵1| and |𝐶𝐷𝑃𝐵2| are highly greater 

than |𝑟𝑦1| and |𝑟𝑦2| indicate that a suppression effect is present that produces inflated |𝛽̂1| and 

|𝛽̂2| values being respectively 3.45 and 2.61 times greater than |𝛽̂1| and |𝛽̂2| in an equivalent 

model with 𝑟12 = 0.  

4 DISCUSSION 

The concept of two-predictor suppression effects has been the subject of debate over 

terminology (Friedman and Wall 2005), definition, and interpretation (Mendershausen 1939; 

Horst 1941; Meehl 1945; Conger and Jackson 1972; Conger 1974; Cohen and Cohen 1975; 

Velicer 1978; Tzelgov and Henik 1991; Sharpe and Roberts 1997; Shieh 2001; Lynn 2003). 

One point of agreement has been the approach chosen by researchers who agree that a 

suppressor variable showing “no or low” correlation with the criterion variable y but is 

correlated with another significant predictor x1 can be included in the regression equation to 

increase the predictive validity of x1 and for this reason they consider suppressor variables 

useful and even desirable for situations where the purpose of the study is prediction (Horst 

1941; Conger and Jackson 1972; Tzelgov and Henik 1991; Pedhazur 1997; Cohen et al. 

2003; Friedman and Wall 2005; Watson et al. 2013; Darlington and Hayes 2017). On the 

other hand, some texts have warned researchers against multicollinearity and suggest some 

“rules of thumb” to limit the magnitude of multicollinearity between predictor variables 

specially when the purpose of the study is "theoretical explanation" (e.g., Cohen et al. 2003), 

they argue that highly correlated predictor variables, when simultaneously included in the 

regression equation, cause “instabilities” in different meanings: first, increased standard 

errors as a function of high multicollinearity may cause “instability” in estimating the 

regression coefficients (Neter et al. 1996; Fox 1997; Cohen et al. 2003); second, 

computational inaccuracies are more likely to occur in calculating the inverses of matrices 



 

with highly correlated variables (Cohen and Cohen 1983); and third, high levels of 𝑟12 can 

lead to rapid increase in 𝛽̂2, a condition in which “the interpretation of regression coefficients 

may become problematic”  (Cohen et al. 2003). Friedman and Wall (2005) argue against the 

latter texts by presenting evidence that show the standard errors (SE's) of regression 

coefficients do not increase steadily with increasing multicollinearity and there are cases in 

which low standard errors are coincident with high multicollinearity and that SE's of 

regression coefficients always become 0 when the multicollinearity for each given pair of 𝑟𝑦1 

and 𝑟𝑦2 reaches its absolute maximum values (see table 1 through 3 above). They also argue 

that the issue of computational accuracy is no longer problematic for the latest generations of 

regression algorithms (Friedman and Wall 2005). And finally, Friedman and Wall (2005) 

conclude that when regressing y on two predictors there are no limits on multicollinearity 

except those warranty a nonnegative definite matrix. Although Friedman and Wall's 

observation concerning SE's of regression coefficients is quite correct, their final conclusion 

that there is no limits on multicollinearity except nonnegative, definiteness limitation is 

incorrect. Similarly, as Cohen et al. (2003) observed, it is true that there is a rapid increase in 

𝛽̂2 at high levels of 𝑟12, but their agreement to use the suppressor variables to increase 𝑅2 in 

cases where the main purpose of the study is increasing the predictive validity is misleading. 

As noted earlier in the introduction section, two important aspects of two-predictor 

suppression effects have been overlooked that have led researchers to misleading 

conclusions: first, failure to examine 3D scatterplots of suppression and non-suppression 

situations; and second, insufficient attention to the important issue of statistical control 

mechanisms in non-suppression compared to suppression situations. Taking into 

consideration these two important aspects, this study achieved significant findings as follows: 

First, a closer look at the terms in 𝑅2, 𝛽̂1, and 𝛽̂2 formulas indicates that these formulas 

consist of two separate parts (see Equality 7 above): the collinearity-independent part (CIP) 



 

and the collinearity-dependent part (CDP). The CDP terms in 𝑅2, 𝛽̂1, and 𝛽̂2 formulas are 

associated with statistical control mechanisms, and therefore should be quantified and 

examined separately. 

Second, the CDP terms in 𝑅2 
formula act differently in redundancy and suppression regions 

in terms of statistical control. While the SCP, or the sum of the CDP terms in 𝑅2 formula, is 

always negative in redundancy regions penalizing 𝑅2 for multicollinearity, the penalty level 

of SCP decreases progressively in region III suppression, and as a result SCP subtracts 

progressively smaller proportions of 𝑟12 from 𝑟𝑦2
2  as 𝑟12 approaches 2𝛾 1 + 𝛾2⁄ . At 

2𝛾 1 + 𝛾2⁄  point the penalty level of SCP against multicollinearity reaches 0. Beyond the 

2𝛾 1 + 𝛾2⁄  ratio in region IV enhancement, SCP becomes positive and adds progressively 

greater proportions of 𝑟12 to 𝑟𝑦2
2  as 𝑟12 approaches its absolute maximum value (see Figure 5 

panel A). When 𝑟𝑦1 and 𝑟𝑦2 have similar signs, all 𝑟12's < 0 create the region I enhancement 

(or reciprocal suppression) but when 𝑟𝑦1 and 𝑟𝑦2 are of opposite signs, all 𝑟12's > 0 produce 

the region I enhancement (or reciprocal suppression). The SCP again is positive in region I 

enhancement adding progressively greater proportions of 𝑟12 to 𝑟𝑦2
2  as 𝑟12 approaches its 

absolute maximum value. For example, panel A in Figure 5 shows that SCP is positive and 

equal to 1 − (𝑟𝑦1
2 +  𝑟𝑦2

2 ) both at the upper and the lower limits of 𝑟12 for the pair (-0.6, -0.5) 

whereas if 𝑟12 = 0, SCP = 0; if 𝑟12 = γ, SCP = −(𝑟𝑦2
2 ); and if 𝑟12 = 2𝛾 1 + 𝛾2⁄ , again SCP = 0. 

According to these findings, the authors suggest renaming the regions suggested by Friedman 

and Wall (2005) in terms of their statistical control functioning. Therefore, the following 

labels are suggested: "region I: statistical anti-control", "region II: statistical control", "region 

III: statistical de-control", and "region IV: statistical anti-control" respectively for "region I: 

enhancement", "region II: redundancy", "region III: suppression", and "region IV: 

enhancement". In fact, the aim of these "relabeling" is to show that "correct statistical 



 

control" can only occur in "region II: redundancy" while in region III: suppression, SCP 

gradually removes the statistical control against multicollinearity until by the 2𝛾 1 + 𝛾2⁄  

point SCP = 0; in region I as well as region IV enhancement areas, SCP acts against the 

purpose of statistical control adding progressively greater proportions of 𝑟12 to 𝑟𝑦2
2  until by 

the maximum absolute values of 𝑟12 in both directions 𝑆𝐶𝑃 becomes equal to 1 −

(𝑟𝑦1
2 +  𝑟𝑦2

2 ). Therefore, an important conclusion here is that all different two-predictor 

suppression effects are different kinds of "statistical control dysregulation". These findings 

emphasize that no proportions of 𝑟12 can replace the variance explained in y, and the results 

produced by two-predictor suppression effects are completely erroneous and misleading.   

Third, the CDP terms in formulas of both 𝛽̂1 and 𝛽̂2 also function differently in redundancy 

and suppression regions. The signs of both CDPB1 and CDPB2 values in redundancy regions 

are always opposite to the signs of 𝑟𝑦1 and 𝑟𝑦2 and they always subtract different proportions 

of 𝑟12 from 𝑟𝑦1 and 𝑟𝑦2 to penalize 𝛽̂1 and 𝛽̂2 values for multicollinearity and to produce 𝛽̂1 

and 𝛽̂2 values which are always smaller than or equal to 𝑟𝑦1 and 𝑟𝑦2. In contrast, in region III 

suppression the signs of CDPB1 values are always similar to the sign of 𝑟𝑦1 adding 

progressively greater proportions of 𝑟12 to 𝑟𝑦1 to produce inflated 𝛽̂1 values as 𝑟12 approaches 

2𝛾 1 + 𝛾2⁄  whereas the signs of CDPB2 values are always opposite to the sign of 𝑟𝑦2 in region 

III suppression but always |𝐶𝐷𝑃𝐵2| >  |𝑟𝑦2| which in turn produces inflated 𝛽̂2 values of the 

opposite sign compared to 𝑟𝑦2. Similarly, in region IV enhancement the signs of CDPB1 

values are always similar to the sign of 𝑟𝑦1creating inflated 𝛽̂1 values as 𝑟12 approaches its 

absolute maximum value whereas the signs of CDPB2  values again are always opposite to the 

sign of 𝑟𝑦2 but always |𝐶𝐷𝑃𝐵2| >  |𝑟𝑦2| producing inflated 𝛽̂2 values of the opposite sign 

with respect to 𝑟𝑦2. In region I enhancement, the signs of both CDPB1 and CDPB2 values are 

always similar to the signs of 𝑟𝑦1 and 𝑟𝑦2 adding gradually greater proportions of 𝑟12 to the 



 

zero-order correlations to create progressively more inflated 𝛽̂1 and 𝛽̂2 values as 𝑟12 

approaches its absolute maximum value (see Figure 5 Panels B and C). These findings show 

that the statistical control mechanisms can correctly adjust the slope of the regression surface 

only and only in redundancy regions, while the slope of the regression surface unjustifiably 

increases in all the three different types of suppression situations so that the regression 

surface sharply cuts the plane spanned by both x1 and x2, a condition that can be called "slope 

regulation error" (SRE) (see Figure 3 and Figure 4). Again these findings emphasize that no 

proportions of 𝑟12 can replace the values of regression coefficients, and therefore the slope 

regulations affected by two-predictor suppression effects are completely erroneous and 

misleading. 

This study presents a complete account of two-predictor suppression effects in terms of the 

important issue of statistical control that expands the previous knowledge and resolves the 

complexities. The authors have also developed some useful applications and tools that help 

simulate and examine all different kinds of two-predictor suppression effects and boost 

further research. These findings also provide important implications for the issue of "effect 

size" in linear regression and can change the educational contents and materials of the topic 

of two-predictor suppression effects in linear regression modeling. 

This study also involves important limitations. First, the case studies and examples in this 

study do not include situations where there are more than two predictors in the model. 

Second, only continuous quantitative variables have been included, and further investigation 

on regression with categorical variables or with a combination of continuous and categorical 

variables remains to be carried out. The implications for the issue of "effect size" also need to 

be investigated in future. And finally an important question is that how can these findings and 

software be best incorporated into educational contents and materials.        
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